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1. INTRODUCTION

In the thesis proposal, we suggested to study the preparedness and response

stages of disaster relief operations while maintaining fairness among beneficiaries as

a concern. Fairness in the preparedness stage is incorporated as a way to design a

network on which the items can be distributed fairly. For the response stage model,

we aim to build a model that enables us to distribute relief items in a timely and

fairly manner. We have completed the studies related with the preparedness stage

by proposing mathematical models, CLFDIP and its variant CLFDIP_EarlyNotify.

We suggested three heuristic approaches to solve the problem, namely Cluster-first,

Iterative, and Simulated Annealing. Since the performance of the heuristic methods

were found to be inadequate for large instances, Benders decomposition based exact

methods to solve these models are proposed. Numerical studies indicate the success of

the exact solution method.

Aligned with our thesis proposal, we moved on to the response stage of disaster

relief operations. As the first step, we studied the literature on the fairness concept to

come up with a general research direction, and a basic relief item distribution model is

proposed. The minimization of inequality between demand points may lead to inferior

solutions since it contradicts the maximization of individual utilities of the beneficiaries.

Therefore we need to focus on fair optimization which considers equity, effectiveness and

efficiency rather than inequality minimization. In this semester we refined the model

and the proposed objective functions that can focus on both fairness and effectiveness.

Since off-the-shelf solvers are unable to solve even small instances in a reasonable

amount of time, exact solution techniques that could tackle the problem are considered

first, then a heuristic solution method is implemented. A data generation scheme

is defined and the numerical performance of the model and objectives are studied.

Also, the proposed objectives are evaluated using different performance measures in

the literature.

The rest of this manuscript is organized as follows: Chapter 2 introduces some
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of the studies in inequity averse optimization. Chapter 3 presents the base routing

model is used in studies and proposed objective functions that considers effectiveness

and fairness in distribution of goods. These two chapters are similar to the previous

report, however they are kept to have a complete manuscript. Chapter 4 introduces

the proposed heuristic solution method. Finally, Chapter 5 provide numerical results

and Chapter 6 concludes the report.
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2. FAIRNESS CONCERN AND OBJECTIVES USED IN

DISASTER RESPONSE

In the delivery of disaster relief items to the affected population, a fair distribu-

tion of goods in terms of amount and timeliness is crucial. It is at least as important as

the equity provided in other public services since human lives may be at stake. Many

disciplines (including economics, political science, and operations research among oth-

ers) are interested in the equity concept (Leclerc et al., 2012). In economics literature,

several studies on the equity and efficiency trade-off and its applications can be found.

One can refer to Sen and Foster (1997) and Young (1995) for books on the subject with

the economics point of view. Savas (1978) discuss efficiency, effectiveness and equity as

three performance measures in public service deliverance. They define efficiency as how

much output is obtained compared to the input, effectiveness as the satisfaction pro-

vided by the service relative to the needs, and define equity as “fairness, impartiality,

or equality of service”. Savas (1978) also elaborates alternative approaches to allocate

public services equitably as equal payments, equal outputs, equal inputs, and equal

satisfaction of demand. Marsh and Schilling (1994) provide a review on the subject

and present 20 different equity measures, then build a framework and analyze their

characteristics. Mandell (1991), Bertsimas et al. (2011), and Bertsimas et al. (2012)

provide studies that investigate the trade-off between efficiency and fairness. Apart

from these, Mulligan (1991) and Kalcsics et al. (2015) provide studies on equity in the

facility location problem setting.

Balcik et al. (2010), Ogryczak et al. (2014), Karsu and Morton (2015) and Matl

et al. (2016) provide reviews on the fair optimization models. Balcik et al. (2010) fo-

cus on nonprofit and public sector with a vehicle routing perspective. Ogryczak et al.

(2014) review equity on network models. They present “max-min fairness” and “lex-

icographic maximin” as equity measures. Then they state minimization of inequality

measures may lead to inferior solutions since it contradicts maximization of individual

utilities of the beneficiaries. Therefore they express the need to focus on fair optimiza-
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tion which considers both equity and efficiency rather than inequality minimization.

They provide a review on objectives that can be used for this purpose, and the fair

optimization models in communication networks and location and allocation models.

Karsu and Morton (2015) provide a systematic review on inequity averse optimization

in operational research. They mainly focus on equitability and balance issues. The

main difference between equitability and balance is the anonymity among entities, i.e.

equitability compares identical individuals whereas balance concerns with entities with

different needs and preferences. They review the allocation, location, vehicle routing,

scheduling, transportation and network design, and other studies in terms of equitabil-

ity concerns. Then they categorize Rawlsian (Rawls, 1971), lexicographic, inequality

index based, and inequity-averse aggregation function based approaches as different

ways to handle fairness. Matl et al. (2016) focus on equity objectives in vehicle routing

perspective. They classified the literature in vehicle routing into five groups. The first

two are “vehicle routing problem with route balancing” (VRPRB) and its time win-

dow extension. VRPRB models are bi-objective where the second objective minimizes

range of distance traveled for equity. The third group, “min-max VRP” contains the

models that include a single objective to incorporate equity. Then they define other

methods, and application papers as the remaining classes. Matl et al. (2016) also pro-

vide theoretical and numerical analysis on inequality measures and their effects on the

solutions.

2.1. Approaches to Handle Equity Concerns

Assuming y = (y1, y2, ..., ym) is a vector of utilities of beneficiaries (Let yi be the

outcome of a given distribution for beneficiary i ∈ I, I = {1, 2, ..,m}), the utilitarian

solution maximizes ∑i∈I yi among feasible solutions. It is a natural choice where the

system efficiency is measured by the total utilities. Although in most cases the total

system utility reduces under a fairness consideration, the nature of the problem may

require a fairness scheme. However there is no universally accepted scheme of equity

since its interpretation is subjective and problem specific (Bertsimas et al., 2011). The

most widely used approaches to handle equity can be summarized below (Karsu and
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Morton, 2015; Ogryczak et al., 2014; Matl et al., 2016).

2.1.1. The Rawlsian approach

It is one of the simplest and most commonly used approaches. It is also referred

as “max-min fairness” since it maximizes mini∈I yi to provide equity. However this

approach cannot differentiate among distributions as long as they have the same utility

level for the most unfavorable entity (e.g. utility vectors (1,1,9) and (1,5,5) are the

same for the Rawlsian approach).

Lexicographic approach is an extension to the Rawlsian approach, which aims to

alleviate the the problem of not being able to differentiate the differences among the

entities except the worst one of the max-min approach. After maximizing the smallest

utility level, it considers the next worst-off entity, and moves on for the next ones.

2.1.2. Inequality index based approach

Inequality indices are functions that assign a scalar value to a given utility vector.

They are usually utilized in multiobjective models since they only consider equitability,

and ignore efficiency concerns. The most commonly used inequality indices can be given

as follows:

• Range: The difference between highest and lowest utilities (maxi∈I yi −mini∈I yi).

• Deviation: The deviation from the mean. Total absolute deviation (∑i∈I |yi−y|)

or maximum component-wise deviation (maxi∈I |yi − y|) can be considered.

• Variance: The variance of utilities of entities (∑i∈I(yi − y)2/|I|).

• Gini coefficient: It is one of the most widely used index in economics. Gini

coefficient (
∑

i∈I

∑
j∈I |yi−yj |

2|I|
∑

i∈I yi
) takes values between 0 and 1, and the smaller the

gini index is, the lower is the inequality.

• Sum of pairwise absolute differences: The sum of pairwise absolute differ-

ences among all entities (∑i∈I
∑
j∈I |yi − yj|)
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2.1.3. Inequity-averse aggregation function based approach

In order to achieve equity-efficiency trade-off, a function U : Rm 7→ R that

concerns both equity and efficiency can be used. In this case, the original problem is

modified as max{U(y) : y ∈ Y } where Y ∈ Rm is set of feasible solutions.

A function needs to satisfy the following properties to be inequity-averse (Karsu

and Morton, 2015):

• If y1 < y2 then U(y1) < U(y2) ∀y1, y2 ∈ Y (Function U is strictly increasing

with respect to every coordinate).

• U(y) = U(Πl(y)), where Πl(y) is an arbitrary permutation of the y vector (Func-

tion U is symmetric).

• If yj > yi then U(y) < U(y − εej + εei) ∀y ∈ Rm, where 0 < ε < yj − yi, and

ej , ei are the jth and ith unit vectors in Rm (Function U satisfies Pigou-Dalton

principle of transfers).

A general fairness scheme, “α-fairness” (Atkinson, 1970), defines a parametric

class of utility functions as given in Equation (2.1).

Uα(y) =


∑
i∈I

y1−α
i

1−α α ≥ 0, α 6= 1∑
i∈I log(yi) α = 1

(2.1)

Moreover, proportional fairness scheme (for which a transfer of a resource between

entities is favorable only if the percentage increase in the utility of the receiving end is

higher than the percentage decrease in the utility of the other) and max-min fairness

schemes are captured as the special cases of α-fairness for α = 1 and α →∞, respec-

tively. For the case α = 0, α-fairness scheme is equivalent to the utilitarian approach.

Therefore α parameter can be used to change the attitude on efficiency-fairness trade-

off and it is called the inequality aversion parameter (Bertsimas et al., 2012).
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2.2. Efficieny-Fairness Trade-off

It is obvious that any fair solution concept will probably cause some deterioration

in the total system efficiency. Bertsimas et al. (2011) and Bertsimas et al. (2012)

provide means to discuss the relation of efficiency loss and fairness increase. Let S(Y )

be the objective of the utilitarian solution for the set of feasible solutions Y ∈ Rm, and

F (Y ) be the objective of a fair solution under a certain fairness scheme. Then they

define “price of fairness” as the the relative efficiency loss under an imposed fairness

scheme, given in Equation (2.2). They also derive theoretical bounds for price of

fairness under α-fairness scheme as a function of the number of entities and inequality

aversion parameter.

POF (Y ) = S(Y )− F (Y )
S(Y ) (2.2)

2.3. Objectives Used in Disaster Response

Various objectives are employed in humanitarian relief distribution models that

represent the needs. Trade-offs involve the decision of item types to satisfy and in which

order the demand points will receive them, which bring conflicting aims in efficiency,

effectiveness and equity (Gralla et al., 2014).

Efficiency objectives mostly consider operational costs of the humanitarian agen-

cies or total travel times. Balcik et al. (2008), Tzeng et al. (2007) and Pérez-Rodríguez

and Holguín-Veras (2015) consider minimization of operational costs. Campbell et al.

(2008), Huang et al. (2012), Tzeng et al. (2007), Lin et al. (2011), Lin et al. (2012)

consider travel times. Huang et al. (2015) define their efficiency objective as “ the

lifesaving utility”, which weights each demand node by a marginal utility of that node.

Effectiveness objectives include maximization of the amount of demand satisfied

(Lin et al., 2011, 2012), penalty cost due to unsatisfied demand (Balcik et al., 2008)
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or demand weighted arrival times (Huang et al., 2012). Huang et al. (2015) calculate

effectiveness as the “delay cost of suffering”, which is a sum of unsatisfied demand

weighted by a linearly increasing function of time.

Equity objectives are usually related with the arrival times of relief items or the

satisfaction rate. Among the ones that consider arrival times Campbell et al. (2008)

minimizes the latest arrival time and the sum of arrival times. Huang et al. (2012)

minimize time weighted disutility by using a piecewise linearly increasing function to

penalize late arrivals more than others. Pérez-Rodríguez and Holguín-Veras (2015)

uses social cost concept that increases exponentially as the deprivation time increases.

Among the ones that take satisfaction rates into account, Tzeng et al. (2007) maximize

the minimum satisfaction rate. On the other hand, Lin et al. (2011) and Lin et al.

(2012) minimize the maximum difference in satisfaction rates, and Huang et al. (2015)

minimize the variance in satisfaction rates.

2.4. Aim

In this study, we aim to provide linear objective functions that can focus on

effectiveness and fairness depending on a parameter, and can be applied to the response

stage model that we develop. In our model, we do not assume the demand of items

occur at the initial period and demand requirements can occur during the planning

horizon. All of the studies mentioned in Section 2.3 assume all demand requirements

are determined at time zero, except Lin et al. (2011) and Lin et al. (2012). Moreover,

we ensure that demand satisfaction is guaranteed at the end of the planning horizon

for all demand points. In the instances, we fix the planning horizon, which inherently

considers the time related objectives. Therefore for the objective functions that we will

propose, we tried to capture both the timeliness and satisfaction levels in a way that

their progression is important, rather than their final values.

It should also be noted that the properties of inequity-averse functions that are

stated in Section 2.1.3 deals with allocation of resources in a static environment. How-
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ever, in relief distribution we deal with a multi-period problem, and the network and

problem structure such as number of vehicles and their capacities limit the feasible

allocation items and their times. Therefore the y utility vector is not the allocation

values for each entity, but a vector of satisfaction levels for each time period. Therefore

we were unable to come up with a inequity-averse aggregation function that satisfy the

given properties. However, the problem properties (guaranteed demand satisfaction,

choosing smallest planing horizon) helps us to observe similar properties.

In this respect, the response stage model along with alternative objective func-

tions to study are provided in Chapter 3.
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3. THE RESPONSE STAGE MODEL TO STUDY

ALTERNATIVE OBJECTIVES

3.1. Response Stage Model

Response stage is the phase when the execution of the relief operations performed

given the previous decisions. Operational decisions should be considered in detail while

the deliveries should be sufficient, timely and fair.

The properties of the model that will be considered in response stage are as

follows:

• A single item exits.

• Requirements at TFs does not have to occur at time zero, demands can arrive

during the planning horizon.

• Demand must be satisfied as much as possible in a timely manner, and demand

satisfaction levels should differ as small as possible to provide fairness. All demand

must be satisfied at the end of the planning horizon.

• Multiperiod setting is required.

• Multiple number of depots with different initial supply amounts exist.

• Heterogeneous and capacitated fleet of vehicles do not have assigned depots,

therefore tours are not mandatory and open. They can start operating any time

at any node.

• Vehicles can collect items from different depots, inventory can be carried from

one PF to another, and split deliveries are allowed.

In order to have a base model that will allow us to study alternative objective

functions, we provide a multi-depot, heterogeneous-vehicle, capacitated, open vehicle

routing problem with split deliveries that will satisfy the properties above.

The sets, parameters and the decision variables that are needed for the response

stage model are given below and Equations (3.1−3.23) define ResponseModel.
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Sets:

T Set of time segments, T = {0, 1, ...|T |}

I Set of temporary facility (TF) nodes

J Set of permanent facility (PF) nodes

N Set of all nodes, I ∪ J = N

A Set of arcs, A = (I × I ∪ J × I)

V Set of vehicles

Parameters:

dit Demand generated at TF i at time t

τnm Number of time segments it takes to travel on arc (n,m) ∈ A

cv Capacity of vehicle v, in number of items

sj Amount of items initially held at PF j

Bvnt =


1 If vehicle v starts at node n at time t

0 otherwise

Decision variables:

Xvnmt Binary variable indicating if vehicle v that traveled on arc (n,m) arrived to

node m at time t

Yvnmt Amount of items carried on vehicle v that traveled on arc (n,m) arrived to

node m at time t

Ijt Remaining amount of inventory at PF j at the beginning of time t

Zvit Amount of items satisfied at TF i by vehicle v at time t

Gvnt Binary variable indicating if vehicle v finishes its service at node n at time

t

Pit The percentage of the satisfied cumulative demand in TF i at time t

Qit Binary auxiliary variable indicating if the cumulative amount carried to TF

i up to time t is larger than the cumulative demand requirement
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ResponseModel:

min f(X, Y, Z, I, P ) (3.1)

s.t.

Xvnmt = 0 v ∈ V, (n,m) ∈ A, t = 0 (3.2)

Ijt = sj j ∈ J, t = 0 (3.3)

Bvnt +
∑

m:(m,n)∈A
Xvmnt =

∑
m:(n,m)∈A

Xvnm(t+τnm) +Gvnt v ∈ V, n ∈ N, t ∈ T (3.4)

Yvnmt ≤ cvXvnmt v ∈ V, (n,m) ∈ A, t ∈ T (3.5)

Ijt +
∑
v∈V

∑
n:(n,j)∈A

Yvnjt = Ij(t+1) +
∑
v∈V

∑
n:(j,n)∈A

Yvjn(t+τjn) j ∈ J, t ∈ T (3.6)

∑
n:(n,i)∈A

Yvnit = Zvit +
∑

n:(i,n)∈A
Yvin(t+τin) v ∈ V, i ∈ I, t ∈ T (3.7)

∑
v∈V

∑
t∈T

Zvit =
∑
t∈T

dit i ∈ I (3.8)

∑
n∈N

∑
t∈T

Gvnt = 1 v ∈ V (3.9)

Zvit ≥
∑

n:(n,i)∈A
Xvnit v ∈ V, i ∈ I, t ∈ T (3.10)

∑
v∈V

∑t
t′=0 Zvit′∑t

t′=0 dit′
≤ 1 +Qit

∑
t′∈T

dit′ i ∈ I, t ∈ T (3.11)
∑
v∈V

∑t
t′=0 Zvit′∑t

t′=0 dit′
≥ Qit i ∈ I, t ∈ T (3.12)

Pit ≤
∑
v∈V

∑t
t′=0 Zvit′∑t

t′=0 dit′
+Qit i ∈ I, t ∈ T (3.13)

Pit ≤ 2−Qit i ∈ I, t ∈ T (3.14)

Pit ≥
∑
v∈V

∑t
t′=0 Zvit′∑t

t′=0 dit′
−Qit

∑
t′∈T

dit′ i ∈ I, t ∈ T (3.15)

Pit ≥ Qit i ∈ I, t ∈ T (3.16)
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Xvnmt ∈ {0, 1} v ∈ V, (n,m) ∈ A, t ∈ T (3.17)

cv ≥ Yvnmt ≥ 0 v ∈ V, (n,m) ∈ A, t ∈ T (3.18)

sj ≥ Ijt ≥ 0 j ∈ J, t ∈ T (3.19)

Zvit ∈ {0} ∪ Z+ v ∈ V, i ∈ I, t ∈ T (3.20)

1 ≥ Gvnt ≥ 0 v ∈ V, n ∈ N, t ∈ T (3.21)

Qit ∈ {0, 1} i ∈ I, t ∈ T (3.22)

1 ≥ Pit ≥ 0 i ∈ I, t ∈ T (3.23)

In ResponseModel only the constraints are presented since alternative objective

functions will be presented in the following sections. Constraints (3.2) and (3.3) set the

initial values for the variables related to vehicle and inventory levels in the first time

segment, which will be implemented as variable bounds instead of explicit constraints.

Constraints (3.4) define the vehicle conservation and (3.5) limit the amount transported

on a vehicle by its capacity. Equations (3.6) define inventory balance constraints for

PFs, where items collected from other PFs can be dropped of to another PF. Equation

set (3.7) is the inventory balance constraints for TFs. Constraints (3.8) makes sure that

all of the demand is satisfied at the end of the planning horizon for all TFs. Equations

(3.9) ensures all vehicles will leave the network, which is required for constraints (3.4)

to work properly. Constraints (3.10) added to improve effectiveness by making sure

that if a vehicle visits a demand point, it has to satisfy some demand there. Equations

(3.11) and (3.12) determine the value of auxiliary Qilt variables. Constraints (3.13) −

(3.16) calculate the percentage of satisfied demand in TF i at time t, such that its value

is bounded between 0 and 1 even if the amount of item carried to that TF i is higher

than the cumulative demand up to time t. Lastly, equations (3.17) − (3.23) define the

variables. Yvnmt, Ijlt, and Gvnt are left as continuous variables since they will obtain

integer values due to the definition of the constraints.
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3.1.1. Valid Inequalities

A set of valid inequalities that considers the earliest entrance time to a given

node be a given vehicle is defined to improve the solution quality. The valid inequality

set eliminates all Xvnmt and Yvnmt that cannot occur due to initial required paths of a

vehicle, and it is defined in equation 3.24 below, where τ̃nm defines the shortest distance

between nodes n and m.

∑
n′∈N

∑
m:(m,n′)∈A

t̄+τ̃n̄m+τmn′−1∑
t′=0

Yv̄mn′t′ +Xv̄mn′t′ = 0 v̄ ∈ V, n̄ ∈ N, t̄ ∈ T : Bv̄n̄t̄ = 1

(3.24)

3.2. Proposed Objective Functions

The ResponseModel ensures all requirements will be satisfied at the end of the

planning horizon, assuming the total inventory held in the PFs is sufficient to cover

all cumulative demands of TFs and the planning horizon is long enough. Therefore

effectiveness consideration is related with the timeliness of the distribution of goods

and the fairness consideration is related with the discrepancy among TFs during the

horizon.

In Section 2.1, utilities of each TFs, yi, are defined to discuss fairness considera-

tions. As mentioned before, satisfaction levels of TFs at the end of the planning horizon

cannot be considered in our case since demands satisfaction is guaranteed. Therefore

we consider the satisfaction levels with respect to time buckets. Moreover, we cannot

use demand weighted arrival times since the demand generation is not completed at

time zero, and satisfaction levels of a TF may reduce as new demand requirements

occur.

One way to define the “disutility” of each TF i is yi = ∑
t∈T (1−Pit), which can be

interpreted as the area above the satisfaction level curve for that TF. However it should
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be noted that this definition could be considered as inadequate since it s hard to define

the trade-off between short durations of low satisfaction levels and long durations of

higher satisfaction levels.

With these in mind, the proposed objective functions are given in the following

subsections.

3.2.1. ResponseModelObj1

For the first objective, we can consider the discrepancy among TF points at each

time period. One can assert that it is unfair for TF i and TF j have different disu-

tilities. Using this idea, we can penalize the satisfaction ratio differences between TFs

at each time periods. Moreover, we can suggest that the differences that are closer

to the end of the planning horizon are more important than the earlier ones. There-

fore ResponseModelObj1 minimizes the total sum of percentage differences between

satisfaction levels weighted by tα.

The additional decision variables required and ResponseModelObj1 are given

below.

Additional decision variables:
Dijt Percentage difference between the satisfaction levels of TF i and TF j at

time t

ResponseModelObj1:

min
∑
i∈I

∑
j∈I
j 6=i

∑
t∈T

tαDijt (3.25)

s.t.

(3.2− 3.23)

Pit − Pjt ≤ Dijt i ∈ I, j ∈ I, j 6= i, t ∈ T (3.26)

Dijt ≥ 0 i ∈ I, j ∈ I, j 6= i, t ∈ T (3.27)
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Intuitively, one would expect that the discrepancies between TFs should be smaller

in the last periods as the value of α increases, which indicates that the decision maker

accepts early differences more than the later ones.

Also it should be noted that this objective is equivalent to “sum of pairwise

absolute differences” when α = 0.

3.2.2. ResponseModelObj2

The second objective function is based on multi-objective optimization where

effectiveness can be defined by the total unsatisfied demand percentages throughout

the planning horizon, and fairness metric can be given as the total difference between

the satisfaction levels between two TFs. It is actually an extension of the first objective

by also considering the utility term. The corresponding ResponseModelObj2 model

is given below where f(α, t) is the fairness-efficiency trade-off parameter which is a

function of time.

Additional decision variables:
Dijt Percentage difference between the satisfaction levels of TF i and TF j at

time t

ResponseModelObj2:

min
∑
i∈I

∑
t∈T

(1− Pit) +
∑
i∈I

∑
j∈I
j 6=i

∑
t∈T

f(α, t)Dijt (3.28)

s.t.

(3.2− 3.23)

Pit − Pjt ≤ Dijt i ∈ I, j ∈ I, j 6= i, t ∈ T (3.29)

Dijt ≥ 0 i ∈ I, j ∈ I, j 6= i, t ∈ T (3.30)

Unlike Obj1, this objective includes the utility term as well. Also, we can define

different f(α, t) functions that can perform differently. We can have f1(α, t) = tα to

define Obj2.1, or it can linearly increase from zero to 2α, i.e. f2(α, t) = 2αt
T

to define
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Obj2.2. Moreover, by defining the objective function as in Equation (3.31), we obtain

Obj2.3 which can emphasize effectiveness in earlier periods, and equality in the latter

periods.

∑
i∈I

∑
t∈T

(2α− f2(α, t))(1− Pit) +
∑
i∈I

∑
j∈I
j 6=i

∑
t∈T

f2(α, t)Dijt (3.31)

Intuitively, one would expect that the discrepancies between TFs should be smaller

in the last periods as the value of α increases. Also, one would expect the model focus

more on effectiveness as the value of α(t) reduces. It should be noted that objective

Obj2.2 is equivalent to the “utilitarian” objective with α = 0.

3.2.3. ResponseModelObj3

The third objective function is inspired by the Rawlsian approach. However,

unlike Rawlsian approach, we consider the minimum satisfaction level among all TFs

at each time period. The corresponding ResponseModelObj3 is given below where tα

term tries to increase effectiveness by pushing the model to satisfy the all demands as

early as possible. Also note that the Qit binary variables are not needed to define Pit
variables correctly in this model.

Additional decision variables:
Dt The minimum satisfaction level among all TFs at time t

ResponseModelObj3:

min
∑
t∈T

(1−Dt)tα (3.32)

s.t.

(3.2− 3.10), (3.17− 3.21), (3.23)

Pit ≥
∑
v∈V

∑t
t′=0 Zvit′∑t

t′=0 dit′
i ∈ I, t ∈ T (3.33)

Pit ≥ Dt i ∈ I, t ∈ T (3.34)

Dt ≥ 0 t ∈ T (3.35)
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Intuitively, one would expect that all of the requirements to be satisfied as much

as possible in the last periods if the value of α increases. Although the differences

among TFs are ignored, the we expect all of the TFs to be improved by considering

the worst one.

3.3. Objective Functions in the Literature

In this section, we adapt four objective functions in the literature to use in our

ResponseModel. One of them, namely ObjHSB considers the satisfaction percentages

of TF points at each time period, whereas the rest uses a single utility definition for

each demand point.

3.3.1. ResponseModelObjHSB

Huang et al. (2012) solve a vehicle routing problem for the last-mile distribution

from a warehouse to demand points. For this model, they define an equity objective,

which calculates the fraction of the total unsatisfied demand at each time period for

demand nodes, and converts it into disutility using a piecewise linear convex function

as demonstrated in Figure 3.1 below. In this way, they aim to prioritize the worst-off

demand points before others.

Figure 3.1: An example piecewise linear disutility function (Huang et al., 2012).
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The additional parameters and variables, and the correspondingResponseModelObjHSB

model is given below.

Additional parameters:
ap Parameter value that defines the slope of the linear constraint in pth seg-

ment. ap = {4/13, 8/13, 16/13, 24/13}
bp Parameter value that defines the intercept of the linear constraint in pth

segment. bp = {0,−1/13,−5/13,−11/13}

Additional decision variables:
Fit The disutility of TF i in time t

ResponseModelObjHSB:

min
∑
i∈I

∑
t∈T

Fit (3.36)

s.t.

(3.2− 3.23)

Fit ≥ ap(1− Pit) + bp i ∈ I, t ∈ T, p ∈ P (3.37)

Fit ≥ 0 i ∈ I, t ∈ T (3.38)

3.3.2. ResponseModelP iecewisePropFair

In Section 2.1.3, proportional fairness was introduced as a special case of α-fairness.

Since it maximizes a nonlinear function (∑i∈I Ui = ∑
i∈I log(yi)), we defined it using

a piecewise linear approximation, where the utility yi is defined as yi =
∑

t∈T Pit

|T | (i.e.

normalized area under the satisfaction curve of TF i). The piecewise linear function

that we used is given in Figure 3.2 below, where the horizontal axis represent yi and

the vertical axis represent Ui.
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Figure 3.2: Piecewise linear approximation to the proportional fairness.

Then the corresponding ResponseModelP iecewisePropFair is given below.

Additional parameters:
ap Parameter value that defines the slope of the linear constraint in pth seg-

ment. ap = {23, 92/15, 69/25, 41/25, 28/25}
bp Parameter value that defines the intercept of the linear constraint in pth

segment. bp = {−23/5,−437/150,−207/100,−151/100,−28/25}

Additional decision variables:
Ui Approximated logarithm of the utility of TF i

ResponseModelPiecewisePropFair:

min −
∑
i∈I

Ui (3.39)

s.t.

(3.2− 3.23)

Ui ≤ ap

∑
t∈T Pit
|T |

+ bp i ∈ I, p ∈ P (3.40)

Ui ≥ 0 i ∈ I (3.41)

3.3.3. ResponseModelRange

The range objective is a pure equality objective where the difference in the maxi-

mum and minimum disutilities are minimized. The correspondingResponseModelRange

is given below.
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Additional decision variables:
R1 The maximum disutility among TFs
R2 The minimum disutility among TFs

ResponseModelRange:

min R1 −R2 (3.42)

s.t.

(3.2− 3.23)

R1 ≥
∑
t∈T

(1− Pit) i ∈ I (3.43)

R2 ≤
∑
t∈T

(1− Pit) i ∈ I (3.44)

R1, R2 ≥ 0 (3.45)

3.3.4. ResponseModelRawlsian

The Rawlsian objective is another pure equality objective where the maximum

disutility is minimized. The corresponding ResponseModelRawlsian is given below.

Additional decision variables:
R The maximum disutility among TFs

ResponseModelRawlsian:

min R (3.46)

s.t.

(3.2− 3.23)

R ≥
∑
t∈T

(1− Pit) i ∈ I (3.47)

R ≥ 0 (3.48)
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4. SOLUTION METHOD

As mentioned in Section 3.1 is a hard problem. Also in our preliminary experi-

mentations, we observed that the CPLEX solver fails to find the solution in a reasonable

amount of time even for very small number of facilities, as expected. Although we did

not expect to solve large instances efficiently, we first studied decomposition techniques,

aiming to solve medium-sized problems.

The first idea was to use Logic-based-Benders-Decomposition (LBBD) (Hooker,

2000; Hooker and Ottosson, 2003) to decompose the problem. The idea was built on the

relationship between the vehicular decisions (Xvnmt) and the amount of items carried

on them (Yvnmt). By relaxing the vehicle balance constraints 3.4 and leaving the Xvnmt

variables in the subproblem, the remaining master problem decides on the amount

of items moved from node to node while satisfying the inventory balance equations.

However, the solution of the relaxed master problem may yield solutions where a vehicle

can perform multiple tasks simultaneously. Then, depending on the type of infeasibility

the logic-based feasibility cuts would be used to eliminate these infeasible solutions.

However for some of the cases, we were unable to find feasibility cuts that are proven

to be valid. Moreover, when the cuts that are proven to be valid are implemented, the

run times are worsened. Therefore our attempt to decompose the model using LBBD

is failed.

In the VRP literature, the most common decomposition method to tackle vehicle

routing problems is Branch & Price. We can reformulate our model, by enumerating all

possible routes of a vehicle. A route for a vehicle corresponds to a sequence of nodes,

starting at its initial node and visiting other nodes without delay until the end of the

planning horizon. Then we obtain a relaxed master problem by generating a subset

of these routes initially, which can be solved using column generation by generating

promising columns using the pricing problem. However we postponed the effort on

implementing a Branch & Price algorithm since we believe it is not a very promising
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direction. First of all, the requirement to satisfy all demand makes it harder to come

up with feasible routes. Other than that, the pricing problem contains almost all

constraints that decides on the vehicle routing. Moreover, in our problem depots are

shared by vehicles and inventory relocation is allowed, therefore the pricing problems

are not separable over vehicles. Therefore we decided to focus on a heuristic method,

namely adaptive large neighborhood search (ALNS) for the time being.

4.1. Adaptive Large Neighborhood Search

Adaptive large neighborhood search (ALNS) is introduced by Ropke and Pisinger

(2006a) and further improved in Ropke and Pisinger (2006b), and Pisinger and Ropke

(2007) for rich pickup and delivery models. It is an extension to the large neighborhood

search (LNS) framework given by Shaw (1998) by incorporating an adaptive layer.

ALNS provides a general out-of-the-box framework that can be applied to many vehicle

routing problem types and allows to mix various VRP variants.

ALNS is a local search framework, in which destroy and repair heuristics com-

pete to alter the current solution vector. It requires the definition of a set of destroy

neighborhoods and a set of repair neighborhoods. At each iteration, a destroy heuristic

is selected, which removes at most q many variables from the solution vector. This

is followed by assigning feasible variables to those variables using the selected repair

heuristic. This framework is defined within a local search framework (e.g. simulated

annealing, tabu search, or guided local search), and the generated candidate solution is

accepted if it satisfies the acceptance criteria of the local search framework at the mas-

ter level. In each iteration a destroy and a repair heuristic is selected separately using

roulette wheel with probabilities determined by the past performance. The adaptive

layer of the algorithm updates the performance (scores) of the neighborhoods, and the

heuristics that perform better obtains a higher chance to be selected. Pisinger and

Ropke (2007) state that neighborhoods are usually searched with fast heuristics, and

it could be advantageous to use neighborhoods that can provide diversification.
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4.2. ALNS Applied to the ResponseModel

For our ResponseModel, we build the ALNS algorithm within Simulated Anneal-

ing (SA) framework. Solution representation, destroy and repair heuristics, improve-

ment step that we incorporated, adjustments of the adaptive scores of these heuristics,

initial solution generation and other implementation details are given in the following

subsections.

4.2.1. Solution Representation

The solution vector of the proposed SA-ALNS heuristic is composed of |V| many

list of nodes. For each vehicle, there is a list of node-time pair that represents the

sequence of the nodes that will be visited by that vehicle, and arrival times. Obviously,

the first node in each list is the node where the corresponding vehicle starts its mission.

Given a list of nodes to visit and the starting time of a vehicle (i.e. Bvnt), and given

the fact that vehicles cannot wait in nodes, the sequence can be used to come up with

the schedule of the vehicle. A feasible solution vector contains lists of nodes that do

not violate the planning horizon imposed by the decision maker. Therefore we can

obtain the values of all Xvnmt variables from the solution vector. Then the fitness

value of a solution vector can be calculated by solving the remaining mixed-integer-

program (MIP) after fixing the corresponding Xvnmt variables. However, since we

cannot guarantee the feasibility of a solution vector, constraint (3.8) is replaced with

the relaxed equation (4.1) below. In constraint (4.1), Hi variables indicate the amount

of unsatisfied items for TF i at the end of the planning horizon. Then Hi variables are

penalized in the selected objective function with appropriate penalty values. Although

the remaining fitness calculation problem is a MIP, it takes relatively short time to

solve the problem.

∑
v∈V

∑
t∈T

Zvit +Hi =
∑
t∈T

dit i ∈ I (4.1)
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4.2.2. Destroy Heuristics

Four different destroy heuristics are defined for the proposed SA-ALNS. Each of

the destroy heuristics use destroyProb as a parameter that determines neighborhood

length.

• RandomRemoval: It is the simplest destroy heuristic that takes solution vector

as an input, and nullifies each node with destroyProb probability. This helps us

to improve diversification in the search.

• LongestArcRemoval: Given the solution vector, nodes that it takes longest to

travel to are nullified. The number of removals equals to the destroyProb fraction

of all visited nodes. In this way we aim to eliminate the long travel times, and to

be able to increase the number of nodes that can be visited within the planning

horizon.

• MaxFilledRemoval: Since the demand occurs any time in the planning hori-

zon, some of the demand nodes may receive more items than the generated de-

mand at that time. Since nodes with Pit > 1 are corrected to Pit = 1, this indicate

potential improvement on TF points with smaller fill rates without worsening such

nodes. Therefore given the solution vector, destroyProb fraction of nodes with

highest fill rates are nullified.

• RandomRemovalWithoutInfeasibleNodes: It is the same as the Random-

Removal heuristic, except we do not nullify TF nodes that receive Hi > 0 in the

current solution. In this way we aim to increase diversity of the solution vector

while trying to remain/become feasible.

4.2.3. Repair Heuristics

After a destroy heuristic is applied, the solution vector still remain as a list

of nodes for each vehicle. However, consecutive node-time pairs do not constitute a

feasible vehicle path. Then, four different repair heuristics are defined for the remaining

incomplete solution vector.
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• SolverRelaxedPath: The remaining incomplete solution vector indicate at

some specific time periods, a vehicle should enter a node, without indicating

the originating node. Using this idea, instead of fixing all Xvnmt variables, we

can fix the remaining ones as hard constraints, and solve the SolverRelaxedPath

MIP model. Since this may yield only one of few alternative solutions then the

previous one, we relax the entrance times to nodes using a maxTimeRelax pa-

rameter. We generate a time relaxation value tr, between 1 and maxTimeRelax

randomly, and include the following constraints (4.2) in the model. In equation

(4.2), n̄ and t̄ indicate a node-time pair in the incomplete solution vector for ve-

hicle v̄. In order to avoid spending too much time in solving SolverRelaxedPath,

60 seconds of time limit is imposed.

t̄+tr∑
t=t̄−tr

∑
m:(m,n̄)∈A

Xv̄mn̄t = 1 (4.2)

• AppearanceLikelihoodGreedy: In this repair heuristic, we ignore the time

stamps on node-time pairs in the solution vector. For each TF and PF in the

instance, we calculate a so-called appearance likelihood. For TFs, appearance

likelihood means the expected number of appearance for a TF in a feasible so-

lution vector, and it is calculated by dividing its total demand to average ve-

hicle capacity. For PFs, we expect a PF to appear in a feasible solution vec-

tor TotalOverallDemand/AverageV ehicleCapacity many times. By multiply-

ing this value with the fraction of supply by a PF among all, we calculate its

appearance likelihood. In each iteration, the number of appearance of a node in

the incomplete solution vector are subtracted from its appearance likelihood value

to use as a selection parameter.

Apart from that, we calculate expectedTFrun, which indicates expected number

of consecutive TF nodes in a solution vector of a vehicle before visiting a PF node

as (AverageV ehicleCapacity ∗ T )/TotalOverallDemand. This value is rounded

up or down stochastically.

Then AppearanceLikelihoodGreedy heuristic start to repair the incomplete solu-

tion vector by considering the node with the highest appearance likelihood. De-
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pending on the type of the currently considered node (TF or PF), and considering

the expectedTFrun length, we insert the current node into the solution vector posi-

tion which cause the shortest detour length among all possibilities, while obeying

planning horizon constraints. After each insertion appearance likelihood of that

node is reduced by one, and procedure continues until all nodes have negative

appearance likelihood values, or there are no more possible insertions due to plan-

ning horizon limit. As the last step, time-stamps in the node-time pairs in the

solution vector are corrected.

• AppearanceLikelihoodRandom: Performs in the similar fashion with Appear-

anceLikelihoodGreedy heuristic, except we insert the node with the highest ap-

pearance likelihood to a random position. In this way we aim to improve diversi-

fication.

• RandomInsertion: This heuristic randomly selects an available vehicle, inserts

a random node into a random position. A vehicle becomes unavailable whenever

the required time to visit all nodes in its list exceeds planning horizon.

4.2.4. Improvement Step

We incorporate an improvement step in our SA-ALNS approach which is not

originally present in the ALNS framework. Constraints (3.10) ensure that if a vehicle

enters a TF node, it has to satisfy at lest one unit of demand there, to improve efficiency

in the original formulation. If a repaired solution yields Zvit = 1 for a node i and vehicle

v, this indicates that the solution may be improved by visiting that node. Then at the

end of repair operations, we eliminate nodes with Zvit = 1 from the solution vector as

an improvement step.

4.2.5. Adjustment of Adaptive Weights

The roulette wheel selection mechanism of the destroy and repair heuristics de-

pend on the score of each heuristic. The adaptive layer in the ALNS framework enables

better performing heuristics to be selected with a higher probability. The scores are
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collected within iteration segments, which is defined by scoreUpdateInterval parame-

ter. At the beginning of each interval, interval scores are set to zero. Then within

the interval, scores of the selected heuristics are incremented by scoreG, scoreI and

scoreW for global best solution, improving solution, and accepted worsening solution,

respectively. The total interval score of a heuristic is divided by its number selection

to find its interval score at the end of the time segment. Then the previous scores are

smoothed using a smoothing parameter scoreSmooth to incorporate the previous scores

in the roulette wheel selection.

4.2.6. Initial Solution Generation

We construct an initial solution greedily, and considering the vehicles and nodes

dynamically. We assume all vehicles will collect items from their starting PF node as

much as their capacities, and construct a solution starting there. For each vehicle, the

nodes that we can reach to are the candidates, and we calculate a nodeWeight for those.

If the candidate node is a PF node, we can increase the amount carried on the vehicle

up to our capacity if there are sufficient items left. Then the nodeWeight for that PF

is the ratio of the amount that can be taken from that PF to the travel distance to

that PF. On the other hand if the candidate node is a TF, by going to that TF we

can satisfy some of the generated demand up to that time. Then the nodeWeight for

that TF is calculated dividing the average of the current load on the vehicle and the

unsatisfied remaining demand of that TF by the travel distance. Among all candidates,

we chose the one with the highest nodeWeight, and we add the selected candidate node

to the visiting sequence of the corresponding vehicle. If the selected node is a TF, we

assume the whole demand generated up to that point is satisfied using the items on

the vehicle, if there are enough of them. Otherwise, all items carried on the vehicle are

used to satisfy a portion of the generated demand. On the other hand, if the selected

node is a PF, we assume the vehicle will be filled up to its capacity as long as there

are sufficiently many items remain in the PF. In each case, the amount of items on the

vehicle and PFs, and the total amount of items that are satisfied in TFs are updated

and the algorithm terminates whenever no other nodes can be visited by a vehicle due
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to imposed planning horizon.

4.2.7. Other Implementation Details

As mentioned before, ALNS is implemented within SA framework. The SA pro-

cedure is run for numIter many iterations. A temperature value T is initialized, and it

is decreased in each iteration by geometric cooling scheme, given in (4.3) where α is the

cooling coefficient. At each temperature level, a neighboring solution S ′ is generated

from the current solution S. If the objective value of the neighboring solution, F (S ′),

is an improved value over the current objective value F (S), then the move is always

accepted. Moreover, the worsening moves are accepted with the probability function

given in (4.4), for the minimization problem case. At high temperatures probability of

accepting a worsening move is more than the lower temperature case, and this results

in diversification at the beginning where the temperature is high, and intensification

at the end of the procedure where temperature is lower.

Titer+1 = αTiter (4.3)

P (acceptance) = exp
(
F (S)− F (S ′)

T

)
(4.4)

The values for the parameters used in SA-ALNS procedure are given as follows:

• numIter = 300

• α = 0.97

• T = 1000000

• destroyProb = 0.3

• maxTimeRelax = 2

• scoreUpdateInterval = 30

• scoreSmooth = 0.25

• scoreG = 4

• scoreI = 2

• scoreW = 1
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Then the algorithmic steps of the SA-ALNS heuristic is given in Algorithm 1.

Algorithm 1 Pseudo code of SA-ALNS
1: Initialize parameters, generate initial solution S, iter ← 1

2: repeat

3: if iter % scoreUpdateInterval == 0 then

4: Calculate interval score

5: Update scores by smoothing

6: Clear interval score

7: end if

8: Choose and apply a destroy heuristic using roulette wheel

9: Choose and apply a repair heuristic using roulette wheel

10: Apply improvement step

11: if F (S ′) < F (S) then

12: S ← S ′

13: else if Random(0, 1) < exp(F (S)−F (S′)
T

) then

14: S ← S ′

15: end if

16: Update destroy and repair neighborhood scores

17: iter ← iter + 1

18: T ← αT

19: until iter > maxIter
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5. NUMERICAL RESULTS

In this chapter we analyze the performance of the ResponseModel with different

objective functions using a commercial solver and using the SA-ALNS heuristic. Then

the properties and the behavior of the alternative objective functions are evaluated

using nine metrics that range from utilitarian to egalitarian approaches. For this

purpose, a set of test problems with different sizes are generated.

5.1. Data Generation and Test Instances

The data generation scheme we use is parameterized and enables the decision

maker to generate instances with different characteristics. As parameters, the seed

value to initialize a random stream, the planning horizon T, the number of PFs, the

number of TFs, and the number of vehicles are given by the decision maker. Since we

generate a graph, where all J × I ∪ I × I arcs are present, we use the distance matrix

of the 81 cities in Turkey. We randomly select the PFs and TFs among the cities.

Then the distances between these cities are used to generate the arc distances, with

respect to the parameter that determines the distance in kilometers that correspond

to a time bucket. We assume a heterogeneous fleet of vehicles, so we provide a set

of vehicle capacities, which are randomly assigned to the vehicles by the given vehicle

size probabilities. If the number of vehicles is equal to the number of PFs, each vehicle

starts from a different random PF node. If there are more vehicles than PFs, the excess

vehicles are randomly assigned to PFs. If there are less number of vehicles than PFs,

then the vehicles are assigned to PF nodes randomly.

In order to generate demand amounts, decision maker provides a total expected

number of vehicle runs parameter, which is multiplied by the total vehicle capacity

to obtain the total demand over all TFs. A weight is assigned randomly to each TF

between 1 and maximum base demand multiplier for TFs parameter, and the total de-

mand is distributed over TF points with respect to these weights. In order to distribute
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the total demand of a TF over time periods, a random number of arrivals between min

number of arrivals and max number of arrivals are generated.

The last step is to determine the supply amounts in the PF nodes. We multiply

the total demand by a random value generated between min supply demand ratio and

max supply demand ratio to obtain the total supply. This total supply is distributed

over PF nodes similar to TFs, a weight is assigned randomly to each PF between 1 and

maximum base supply multiplier for PFs parameter. Then the total supply is assigned

to PFs with respect to these weights.

Since we fix the planning horizon T beforehand, there is a chance of having an

infeasible instance. In this case, we gradually reduce the total expected number of

vehicle runs until we get to a feasible solution.

To test numerical performance, twenty test problems with different sizes are gen-

erated randomly. Among these, instances with 2 or 3 PFs; 4, 6, 7, or 8 TFs; 3 or 4

vehicles; and 16, 20 or 23 time segments exist. Instances are named as “P-j-i-v-t”,

where j, i, v, and t represents the number of PFs, TFs, vehicles and time segments,

respectively.

5.2. Results

The models are solved for the given test instances by using IBM ILOG CPLEX

12.8. In all models, Xvnmt variables have the highest branching priority. Run times

are limited to 8 hours as a stopping condition and the number of threads that the

solver can utilize is set to 8. Also %1 relative optimality gap is imposed as a stopping

condition. Finally, for ObjRange, a 0.01 absolute optimality gap is defined to avoid

numerical problems. All experiments are carried out on a PC with 3.30 GHz CPU and

16 GB RAM, running under 64-bit Windows 7 operating system.

Tables 5.1, 5.2, and 5.3 provides summaries of the results of the CPLEX solver



Ta
bl
e
5.
1:

R
es
ul
ts

fo
r
th
e
pr
op

os
ed

ob
je
ct
iv
es

w
ith

α
=

0.
So

lv
er

SA
-A

LN
S

α
=

0
O

bj
1

O
bj

2.
1

O
bj

2.
2

O
bj

3
O

bj
1

O
bj

2.
1

O
bj

2.
2

O
bj

3

P
ro

bl
em

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

P
-3

-4
-3

-1
6

0,
98

15
,5

5
1,

00
7,

50
0,

00
3,

34
0,

96
0,

88
66

,0
3

79
,1

2
0,

00
91

,5
0

2,
07

54
,5

4
0,

00
42

,3
4

P
-3

-4
-4

-1
6

0,
82

10
,4

5
1,

00
10

,7
7

0,
00

4,
30

0,
98

1,
57

62
,4

8
10

8,
38

-
10

2,
02

-
75

,9
1

20
,0

0
50

,3
4

P
-3

-4
-3

-2
0

1,
00

47
7,

58
1,

00
12

3,
93

0,
01

4,
81

1,
00

8,
04

42
,4

7
14

2,
27

2,
97

14
3,

42
3,

54
10

3,
37

5,
14

71
,2

1

P
-3

-4
-4

-2
0

1,
00

63
88

,5
9

1,
00

11
1,

84
0,

01
5,

71
1,

00
3,

65
77

,5
5

23
7,

00
2,

00
21

7,
00

1,
49

15
4,

92
8,

06
11

0,
96

P
-3

-6
-3

-1
6

1,
00

74
2,

58
1,

00
48

6,
50

1,
00

35
,9

4
1,

00
91

,8
6

-
29

7,
28

11
,7

3
31

7,
80

5,
81

19
1,

01
0,

00
28

1,
10

P
-3

-6
-4

-1
6

73
,2

1
72

00
,0

9
18

,6
8

72
00

,0
7

0,
99

27
,5

8
1,

00
34

3,
68

24
,6

8
45

3,
59

5,
78

40
6,

00
9,

18
40

0,
98

8,
33

18
0,

04

P
-3

-6
-3

-2
0

99
,6

6
72

07
,1

7
19

,9
5

72
07

,0
6

1,
00

78
,3

7
1,

00
22

0,
26

15
,1

0
11

42
,8

2
3,

81
13

12
,2

1
11

,1
7

39
3,

79
16

,5
9

40
6,

47

P
-3

-6
-4

-2
0

99
,9

9
72

07
,9

8
17

,0
1

72
05

,7
9

0,
99

30
,6

1
1,

00
65

,6
6

14
,5

9
18

23
,5

6
9,

46
24

46
,2

7
6,

25
81

9,
02

11
,9

6
10

44
,5

5

P
-2

-6
-2

-2
0

1,
00

15
01

,6
9

1,
00

76
2,

99
0,

65
63

,2
3

1,
00

70
,6

7
0,

23
90

8,
13

32
,8

0
28

7,
82

1,
31

25
3,

33
24

,7
4

23
2,

77

P
-2

-6
-3

-2
0

99
,6

4
72

00
,7

8
29

,4
8

72
10

,9
2

0,
84

43
4,

66
1,

00
15

00
,0

3
-1

0,
14

21
95

,4
3

1,
11

17
66

,4
2

0,
34

64
4,

67
0,

80
10

03
,5

7

P
-2

-6
-2

-2
3

98
,5

4
72

06
,1

5
17

,6
9

72
02

,1
5

1,
00

67
,7

8
1,

00
24

4,
77

8,
12

14
17

,9
5

0,
00

11
15

,9
1

7,
27

62
4,

87
6,

70
37

9,
21

P
-2

-6
-3

-2
3

99
,9

7
72

05
,2

3
20

,4
3

72
03

,9
6

1,
00

24
4,

38
1,

00
57

0,
35

11
,6

4
55

95
,6

0
10

,8
1

38
76

,9
2

9,
44

11
41

,4
9

2,
83

13
31

,8
2

P
-2

-7
-2

-2
0

1,
37

72
00

,2
1

1,
00

18
82

,1
3

1,
00

30
,2

6
0,

99
80

,7
1

1,
64

38
4,

75
3,

52
27

6,
20

0,
00

18
7,

87
0,

00
13

0,
79

P
-2

-7
-3

-2
0

91
,4

3
72

06
,4

8
48

,6
7

72
05

,5
5

1,
00

80
,2

4
5,

01
72

06
,0

4
14

,8
1

86
5,

78
12

,8
0

50
5,

44
0,

00
51

9,
73

12
,2

6
74

9,
24

P
-2

-7
-2

-2
3

85
,2

8
72

04
,1

7
43

,7
7

72
03

,8
9

1,
00

11
4,

12
1,

00
61

60
,6

8
1,

59
72

7,
45

-
51

9,
00

0,
00

49
5,

00
0,

00
88

9,
45

P
-2

-7
-3

-2
3

92
,7

0
72

05
,5

4
48

,3
8

72
05

,6
8

1,
00

13
92

,4
7

6,
57

72
05

,1
2

30
,4

3
59

3,
80

2,
95

12
31

,2
5

4,
01

72
8,

91
-

60
2,

97

P
-2

-8
-2

-2
0

1,
00

15
66

,4
8

1,
00

79
2,

73
0,

76
93

,4
1

1,
00

26
3,

90
20

,8
0

59
4,

76
7,

74
59

7,
58

5,
83

34
3,

42
5,

56
27

2,
98

P
-2

-8
-3

-2
0

31
,4

3
72

00
,6

1
37

,7
2

72
06

,1
4

1,
00

81
6,

03
1,

00
77

3,
94

-
68

9,
45

10
,7

6
80

5,
44

-
39

3,
23

4,
68

46
0,

26

P
-2

-8
-2

-2
3

1,
00

64
7,

07
1,

00
85

8,
18

0,
99

23
4,

96
0,

99
41

3,
53

-
61

6,
90

-
55

3,
57

2,
64

31
8,

82
-

36
6,

71

P
-2

-8
-3

-2
3

98
,1

6
72

04
,0

4
55

,7
3

72
06

,6
6

1,
00

60
9,

71
26

,2
0

72
07

,4
1

3,
41

17
78

,9
0

8,
21

18
67

,6
8

8,
73

83
8,

45
3,

85
11

74
,7

1



Ta
bl
e
5.
2:

R
es
ul
ts

fo
r
th
e
pr
op

os
ed

ob
je
ct
iv
es

w
ith

α
=

1.
So

lv
er

SA
-A

L
N

S

α
=

1
O

b
j1

O
b

j2
.1

O
b

j2
.2

O
b

j2
.3

O
b

j3
O

b
j1

O
b

j2
.1

O
b

j2
.2

O
b

j2
.3

O
b

j3

P
ro

bl
em

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

P
-3

-4
-3

-1
6

0,
97

17
,9

9
0,

99
20

,9
2

1,
00

9,
94

0,
98

11
,4

5
0,

95
0,

91
17

,3
0

59
,8

0
38

,0
5

53
,7

2
14

,7
0

57
,4

9
1,

35
90

,5
6

8,
97

38
,5

9

P
-3

-4
-4

-1
6

0,
89

14
,7

7
0,

96
13

,0
2

0,
99

10
,9

6
0,

99
9,

02
1,

00
1,

55
23

,5
8

90
,7

2
-

68
,5

0
-

78
,2

0
-

10
2,

11
-

52
,4

5

P
-3

-4
-3

-2
0

1,
00

15
18

,6
2

1,
00

64
4,

87
1,

00
12

6,
17

1,
00

13
7,

11
0,

99
13

,0
7

6,
65

11
3,

46
17

,4
8

14
0,

38
7,

45
10

5,
95

0,
00

15
3,

74
2,

56
77

,9
6

P
-3

-4
-4

-2
0

1,
00

35
72

,2
2

1,
00

59
61

,4
2

1,
00

47
6,

36
1,

00
34

6,
97

1,
00

9,
43

11
1,

34
17

4,
00

39
,6

4
22

5,
72

14
,4

7
18

8,
04

2,
23

23
0,

23
19

,2
5

10
5,

03

P
-3

-6
-3

-1
6

1,
00

81
5,

28
1,

00
80

1,
45

1,
00

77
2,

01
1,

00
59

1,
32

1,
00

74
,4

5
7,

29
19

2,
66

12
,1

6
17

1,
93

35
,3

3
20

2,
54

33
,8

1
25

6,
21

82
,5

0
13

0,
34

P
-3

-6
-4

-1
6

76
,9

6
72

01
,0

3
65

,5
8

72
01

,4
4

23
,7

6
72

01
,2

3
19

,0
3

72
00

,9
4

1,
00

25
55

,0
2

-
34

2,
50

7,
99

48
8,

89
6,

74
33

8,
60

11
,3

7
39

4,
07

13
,8

1
15

7,
59

P
-3

-6
-3

-2
0

99
,9

7
72

03
,1

5
84

,3
4

72
07

,0
1

11
,9

5
72

02
,1

1
14

,3
1

72
03

,1
1

0,
69

23
8,

13
21

,6
3

24
54

,1
9

56
,8

4
97

7,
72

18
,5

6
12

60
,4

4
18

,0
2

88
9,

78
30

,4
4

37
9,

39

P
-3

-6
-4

-2
0

10
0,

00
72

00
,4

6
80

,5
0

72
06

,5
9

8,
64

72
04

,9
6

5,
22

72
04

,7
2

1,
00

20
7,

75
33

,6
5

23
42

,9
2

-2
3,

54
27

01
,3

5
12

,7
5

13
90

,7
7

4,
30

20
49

,7
3

33
,9

3
69

2,
47

P
-2

-6
-2

-2
0

1,
00

15
65

,0
6

1,
00

13
74

,9
9

1,
00

64
5,

59
1,

00
53

1,
46

1,
00

75
,8

2
44

,6
3

95
2,

13
16

,2
2

27
5,

50
16

,8
1

35
7,

12
2,

69
65

0,
49

73
,8

9
14

0,
35

P
-2

-6
-3

-2
0

99
,9

7
72

00
,2

4
83

,1
1

72
01

,2
8

28
,2

3
72

08
,1

5
23

,6
3

72
00

,0
8

1,
00

10
90

,8
8

-5
,9

7
18

72
,1

4
37

,3
7

20
64

,1
5

0,
21

15
44

,0
9

3,
74

20
16

,0
3

6,
46

48
3,

32

P
-2

-6
-2

-2
3

99
,4

0
72

01
,6

9
80

,5
5

72
00

,2
4

1,
00

42
29

,1
1

1,
00

54
62

,5
1

1,
00

29
3,

72
41

,3
2

51
1,

92
0,

00
18

72
,6

6
18

,2
3

10
19

,1
5

0,
00

11
02

,1
6

0,
00

37
0,

83

P
-2

-6
-3

-2
3

99
,9

8
72

05
,4

5
83

,7
8

72
10

,2
1

18
,3

3
72

05
,4

3
9,

10
72

01
,5

8
1,

00
67

1,
60

-2
7,

77
64

83
,4

8
0,

85
52

68
,5

6
20

,7
0

36
87

,0
7

11
,9

9
40

59
,5

0
12

,2
0

11
49

,9
1

P
-2

-7
-2

-2
0

1,
00

16
76

,1
9

1,
00

13
41

,9
1

1,
00

71
2,

81
1,

00
13

72
,1

0
0,

98
15

,3
7

-
18

4,
30

2,
71

23
8,

99
-

28
0,

55
20

,3
5

22
7,

30
24

,7
0

14
5,

16

P
-2

-7
-3

-2
0

93
,5

1
72

09
,1

5
90

,3
5

72
07

,6
2

51
,9

3
72

07
,4

8
43

,4
4

72
06

,5
8

24
,4

8
72

04
,1

9
-

34
7,

58
13

,1
3

57
2,

43
5,

72
62

4,
33

-
40

8,
94

7,
62

54
6,

69

P
-2

-7
-2

-2
3

73
,8

9
72

06
,0

5
82

,5
5

72
04

,4
1

42
,2

8
72

05
,9

6
36

,1
9

72
04

,6
4

1,
00

59
88

,4
0

7,
56

45
3,

84
8,

73
12

65
,1

8
29

,0
5

41
7,

04
-

35
7,

65
0,

00
46

2,
31

P
-2

-7
-3

-2
3

92
,0

1
72

00
,2

2
89

,4
0

72
05

,4
5

54
,1

9
72

06
,4

9
47

,2
3

72
08

,6
0

8,
46

72
01

,4
7

21
,5

4
14

48
,3

4
21

,9
0

93
4,

64
-

80
8,

55
8,

99
16

96
,7

8
-

43
7,

44

P
-2

-8
-2

-2
0

1,
00

11
18

,2
3

1,
00

83
8,

94
1,

00
11

34
,5

9
1,

00
90

1,
10

0,
97

27
2,

92
19

,9
3

46
8,

19
3,

04
47

7,
25

12
,1

5
31

2,
50

2,
35

48
9,

89
11

,7
6

25
1,

92

P
-2

-8
-3

-2
0

34
,6

7
72

00
,2

7
62

,4
1

72
04

,9
1

23
,9

3
72

00
,7

5
37

,1
9

72
04

,7
4

1,
00

13
43

,3
5

-
56

5,
69

-
49

7,
39

-
81

8,
21

-
79

3,
80

-
45

0,
19

P
-2

-8
-2

-2
3

1,
00

84
0,

45
1,

00
68

7,
06

1,
00

77
3,

43
1,

00
77

8,
01

1,
00

30
9,

86
-

52
8,

28
-

47
9,

42
-

52
9,

15
-

65
9,

39
0,

00
25

6,
84

P
-2

-8
-3

-2
3

99
,5

6
72

04
,4

9
94

,0
1

72
02

,8
5

60
,8

2
72

04
,8

6
58

,4
9

72
05

,1
1

38
,1

8
72

07
,6

8
6,

50
21

20
,5

4
-8

,4
0

36
46

,5
1

-
11

44
,3

9
-

10
61

,0
6

19
,1

5
85

8,
92



Ta
bl
e
5.
3:

R
es
ul
ts

fo
r
th
e
pr
op

os
ed

ob
je
ct
iv
es

w
ith

α
=

2.
So

lv
er

SA
-A

L
N

S

α
=

2
O

b
j1

O
b

j2
.1

O
b

j2
.2

O
b

j2
.3

O
b

j3
O

b
j1

O
b

j2
.1

O
b

j2
.2

O
b

j2
.3

O
b

j3

P
ro

bl
em

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

P
-3

-4
-3

-1
6

1,
00

20
,5

1
1,

00
18

,8
2

1,
00

14
,1

5
1,

00
12

,8
9

0,
97

0,
91

0,
00

83
,8

1
0,

00
54

,8
1

0,
00

63
,5

9
1,

37
77

,3
9

0,
00

38
,0

1

P
-3

-4
-4

-1
6

0,
93

14
,0

9
0,

97
18

,0
2

1,
00

16
,7

7
1,

00
9,

85
0,

99
1,

88
-

92
,8

5
-

69
,3

6
19

,4
5

92
,2

9
-

90
,5

2
-

41
,7

4

P
-3

-4
-3

-2
0

1,
00

12
54

,1
2

1,
00

69
8,

34
1,

00
36

5,
37

1,
00

14
7,

63
0,

99
12

,7
5

2,
80

11
4,

52
61

,6
1

13
9,

82
21

,6
0

12
8,

88
8,

20
20

4,
03

11
,7

3
57

,0
7

P
-3

-4
-4

-2
0

7,
30

72
00

,3
0

1,
00

36
92

,2
7

1,
00

14
44

,3
4

1,
00

31
5,

75
1,

00
10

,5
1

15
3,

44
22

4,
49

22
2,

58
20

1,
93

10
,0

8
21

3,
42

18
,2

9
23

4,
78

25
,9

3
70

,2
4

P
-3

-6
-3

-1
6

1,
00

90
1,

15
1,

00
92

4,
31

1,
00

85
7,

75
1,

00
50

5,
75

1,
00

63
,2

2
-

20
1,

92
-

26
6,

99
42

,5
5

19
1,

86
27

,9
5

29
5,

69
80

,2
4

80
,7

9

P
-3

-6
-4

-1
6

94
,9

1
72

01
,5

0
92

,4
0

72
02

,3
5

33
,0

4
72

01
,1

6
18

,4
4

72
02

,0
2

1,
00

10
80

,0
8

10
3,

76
21

1,
09

24
,1

6
32

2,
44

32
,1

8
29

1,
19

19
,0

2
33

5,
35

-
21

7,
32

P
-3

-6
-3

-2
0

99
,9

5
72

02
,4

9
97

,5
5

72
01

,0
3

44
,4

4
72

03
,4

8
18

,7
1

72
02

,0
4

1,
00

43
7,

32
36

,9
6

30
00

,1
5

76
,6

6
10

72
,7

5
14

,5
3

20
54

,1
2

10
,7

9
14

91
,6

0
30

,2
1

24
5,

24

P
-3

-6
-4

-2
0

10
0,

00
72

07
,7

4
98

,0
9

72
11

,1
6

43
,3

8
72

04
,9

6
5,

80
72

05
,8

0
1,

00
70

9,
38

-1
6,

97
38

62
,1

4
51

,9
8

17
13

,3
7

15
,8

9
17

31
,5

9
30

,3
5

17
14

,5
6

64
,6

6
29

2,
71

P
-2

-6
-2

-2
0

1,
00

15
10

,0
7

1,
00

20
97

,2
0

1,
00

99
5,

31
1,

00
76

8,
30

0,
99

12
7,

69
52

,6
7

54
9,

29
13

,8
7

31
7,

57
35

,7
7

39
7,

10
23

,6
5

27
4,

28
64

,9
9

10
2,

99

P
-2

-6
-3

-2
0

99
,9

8
72

00
,1

8
97

,6
0

72
08

,9
3

50
,6

8
72

05
,4

8
23

,5
3

72
00

,1
5

1,
00

58
6,

10
16

,9
7

33
83

,3
1

38
,0

9
25

82
,7

9
-5

,3
7

23
53

,8
5

5,
89

16
40

,1
2

10
4,

91
30

3,
63

P
-2

-6
-2

-2
3

99
,9

3
72

03
,7

3
97

,9
8

72
00

,2
4

32
,4

1
72

00
,1

6
1,

22
72

00
,4

6
1,

00
31

8,
48

14
,9

8
21

30
,2

5
0,

00
24

33
,1

8
17

,4
1

91
4,

50
6,

68
70

1,
69

1,
18

23
1,

83

P
-2

-6
-3

-2
3

99
,9

9
72

00
,4

1
97

,9
5

72
05

,6
8

40
,9

2
72

09
,7

7
9,

58
72

07
,1

4
1,

00
75

6,
41

-3
3,

68
65

86
,1

9
7,

51
61

12
,1

7
11

,8
8

47
74

,1
2

6,
44

37
29

,0
4

21
,1

1
62

2,
03

P
-2

-7
-2

-2
0

1,
00

11
99

,2
1

1,
00

92
0,

70
1,

00
23

31
,7

5
1,

00
80

6,
71

0,
89

11
,5

9
23

,4
4

25
0,

76
23

,3
8

21
1,

60
11

,9
9

16
2,

75
10

,7
6

24
6,

63
75

,5
0

92
,2

6

P
-2

-7
-3

-2
0

97
,3

9
72

03
,5

8
95

,1
7

72
02

,5
4

71
,5

9
72

05
,0

3
44

,8
2

72
06

,7
3

28
,4

2
72

13
,2

2
-

53
0,

23
25

,0
3

51
6,

16
-

42
1,

41
-

56
2,

24
5,

84
31

0,
94

P
-2

-7
-2

-2
3

88
,7

7
72

00
,9

1
88

,9
6

72
04

,4
9

56
,4

4
72

04
,5

5
37

,5
7

72
03

,6
9

6,
12

72
00

,8
7

0,
81

55
3,

12
-

36
4,

59
12

,7
1

39
2,

83
5,

97
58

9,
87

15
,3

7
26

2,
59

P
-2

-7
-3

-2
3

98
,4

9
72

00
,3

0
98

,5
8

72
00

,7
4

71
,7

0
72

05
,4

1
49

,8
0

72
07

,0
6

4,
63

72
04

,0
1

34
,4

9
82

3,
74

-
55

9,
17

-
68

4,
30

-
57

5,
09

-
21

3,
42

P
-2

-8
-2

-2
0

1,
00

11
02

,0
5

1,
00

12
34

,3
9

1,
00

12
32

,9
0

1,
00

78
2,

73
0,

98
29

4,
51

8,
46

42
2,

36
-

24
8,

98
0,

14
42

6,
80

0,
30

45
0,

53
38

,3
8

14
9,

05

P
-2

-8
-3

-2
0

70
,6

4
72

00
,5

1
68

,8
9

72
00

,6
1

51
,2

4
72

04
,7

5
33

,3
6

72
00

,8
5

1,
00

19
86

,4
9

-
62

6,
76

2,
54

10
99

,5
4

-
58

9,
57

-
79

3,
16

-
28

2,
69

P
-2

-8
-2

-2
3

1,
00

67
4,

44
1,

00
89

2,
60

1,
00

80
3,

06
1,

00
65

3,
65

0,
99

32
1,

79
-

55
3,

54
-

43
8,

29
-

54
4,

57
0,

44
54

0,
03

-
21

9,
75

P
-2

-8
-3

-2
3

99
,8

2
72

00
,5

5
99

,1
0

72
00

,4
5

77
,5

0
72

05
,5

3
59

,4
9

72
04

,9
7

40
,7

9
72

10
,8

1
50

,3
4

12
55

,7
0

33
,6

0
13

61
,1

1
11

,2
1

15
89

,0
3

12
,6

6
14

28
,7

7
58

,8
8

63
5,

97



Ta
bl
e
5.
4:

R
es
ul
ts

fo
r
th
e
ob

je
ct
iv
es

in
th
e
lit
er
at
ur
e.

So
lv

er
SA

-A
LN

S

α
=

0
O

bj
H

SB
O

bj
P

cw
sP

ro
pF

ai
r

O
bj

R
an

ge
O

bj
R

aw
ls

ia
n

O
bj

H
SB

O
bj

P
cw

sP
ro

pF
ai

r
O

bj
R

an
ge

O
bj

R
aw

ls
ia

n

P
ro

bl
em

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

G
ap

(%
)

T
im

e
G

ap
(%

)
T

im
e

P
-3

-4
-3

-1
6

0,
65

1,
96

0,
99

5,
08

65
,8

9
28

,9
6

0,
73

1,
57

7,
67

57
,7

8
7,

54
74

,1
3

48
,9

1
99

,1
0

2,
86

99
,1

5

P
-3

-4
-4

-1
6

0,
91

6,
46

0,
00

5,
61

1,
00

60
,8

0
0,

97
8,

23
-

70
,5

7
-

85
,6

8
-

10
4,

30
5,

95
10

9,
69

P
-3

-4
-3

-2
0

0,
76

10
,4

0
0,

00
7,

04
10

0,
00

23
5,

58
0,

98
11

,6
4

3,
14

10
8,

83
8,

87
12

4,
80

37
92

2,
67

26
1,

42
11

,5
8

18
9,

43

P
-3

-4
-4

-2
0

0,
99

16
,0

1
0,

98
9,

90
10

0,
00

16
,9

6
1,

00
28

,0
9

5,
61

13
9,

77
3,

43
18

2,
52

43
,3

2
64

9,
37

0,
39

26
8,

06

P
-3

-6
-3

-1
6

1,
00

71
,2

9
0,

47
23

,6
3

9,
20

64
9,

92
0,

95
52

,2
2

-
23

7,
10

-
18

3,
08

-
43

7,
64

90
,2

1
38

9,
20

P
-3

-6
-4

-1
6

1,
00

61
,0

3
0,

99
20

,1
4

10
0,

00
72

00
,3

5
0,

96
62

,3
1

9,
55

32
3,

57
90

,5
2

28
7,

40
10

95
,5

5
76

3,
39

10
,1

6
45

1,
62

P
-3

-6
-3

-2
0

1,
00

46
,4

1
1,

00
80

,5
9

10
0,

00
12

23
,7

7
0,

77
13

0,
65

5,
55

44
0,

86
15

,1
9

66
2,

00
80

,9
9

23
42

,6
7

7,
05

94
6,

76

P
-3

-6
-4

-2
0

0,
99

42
,6

4
1,

00
33

,4
9

10
0,

00
9,

59
0,

98
59

,5
2

0,
56

78
4,

69
11

,6
7

73
5,

53
34

,2
7

28
57

,9
6

15
,4

4
14

40
,3

0

P
-2

-6
-2

-2
0

1,
00

10
5,

19
1,

00
76

,4
2

0,
98

11
39

,9
3

0,
99

14
3,

47
7,

55
24

4,
96

0,
00

26
9,

38
12

5,
84

82
1,

54
5,

47
41

7,
51

P
-2

-6
-3

-2
0

1,
00

35
9,

32
1,

00
30

0,
99

10
0,

00
24

38
,3

6
1,

00
19

7,
73

1,
96

10
70

,2
3

2,
46

88
5,

29
53

,0
5

29
63

,4
3

5,
48

14
28

,8
0

P
-2

-6
-2

-2
3

1,
00

13
1,

93
1,

00
12

3,
65

10
0,

00
16

4,
90

1,
00

29
3,

68
0,

00
59

4,
19

13
,0

4
62

5,
49

54
7,

99
31

35
,8

9
13

,9
2

10
15

,3
9

P
-2

-6
-3

-2
3

1,
00

10
1,

84
1,

00
14

6,
44

10
0,

00
80

,9
1

0,
22

14
6,

17
1,

30
14

38
,5

1
6,

09
16

25
,9

5
19

4,
62

46
58

,1
3

3,
86

24
76

,4
8

P
-2

-7
-2

-2
0

0,
99

69
,2

0
1,

00
69

,7
7

1,
00

11
73

,5
1

1,
00

11
5,

44
5,

29
18

5,
83

8,
18

22
0,

25
-

49
0,

17
6,

25
28

6,
60

P
-2

-7
-3

-2
0

1,
00

55
1,

42
1,

00
88

0,
45

10
0,

00
72

06
,4

7
17

,0
2

72
05

,0
6

3,
56

34
8,

79
0,

00
45

1,
57

3,
12

13
07

,9
0

14
,8

9
10

40
,1

5

P
-2

-7
-2

-2
3

1,
00

78
0,

53
1,

00
16

53
,8

9
10

0,
00

72
03

,4
6

13
,0

5
72

01
,5

4
7,

99
43

8,
76

7,
34

44
4,

41
-

13
10

,9
5

4,
76

67
6,

89

P
-2

-7
-3

-2
3

1,
00

49
94

,1
8

4,
58

72
01

,6
5

10
0,

00
72

04
,6

1
15

,2
2

72
03

,7
1

25
,8

1
67

6,
65

-
58

9,
77

-
14

31
,1

9
34

,1
9

11
71

,4
8

P
-2

-8
-2

-2
0

0,
99

28
0,

53
0,

97
16

8,
70

0,
99

80
6,

30
0,

95
29

8,
09

0,
00

34
0,

33
16

,1
4

36
2,

93
13

,7
3

90
2,

51
-

56
5,

88

P
-2

-8
-3

-2
0

1,
00

29
28

,6
6

1,
00

29
26

,1
8

30
,7

7
72

03
,8

4
1,

00
52

46
,1

0
-

49
9,

49
-

59
8,

27
-

17
61

,6
2

-
99

5,
30

P
-2

-8
-2

-2
3

1,
00

31
8,

62
0,

74
36

7,
03

0,
82

80
8,

29
0,

98
53

4,
29

5,
58

44
0,

01
9,

85
37

9,
37

0,
00

82
2,

37
4,

55
67

2,
71

P
-2

-8
-3

-2
3

10
,2

3
72

04
,3

3
1,

00
58

37
,8

7
10

0,
00

72
08

,0
7

26
,7

6
72

05
,4

4
9,

73
11

30
,3

7
22

,5
0

12
73

,5
3

50
,3

6
24

91
,7

6
18

,8
6

19
49

,0
8



37

and SA-ALNS for the proposed objectives with α = 0, α = 1, α = 2. Similarly

Table 5.4 provides the results for the objectives in the literature. In these tables,

the first column indicate the problem instance, and the subsequent columns provide

relative optimality gaps and run times for each objective, for solver and SA-ALNS. In

Tables 5.1, 5.2, 5.3, and 5.4, solver results are given in bold face if a run is terminated

before run time (i.e. stopping criteria for the optimality gap is attained). For the SA-

ALNS results, gap percentages are calculated with respect to the upper bound of the

corresponding solver solution. Therefore a negative value means that SA-ALNS found

a better feasible solution then the solver. If SA-ALNS fails to find a feasible solution,

then the gap value is given by a dash. Among the SA-ALNS results, the solutions that

have gap percentage smaller than %10 are presented in bold face.

Tables 5.1, 5.2, 5.3, and 5.4 indicate that even small instances are hard to solve

to optimality by CPLEX in a reasonable run time. In general, we can observe up to

%100 percent optimality gaps, which is caused by poor lower bounds. Also we observe

that the proposed objectives are harder to solve compared to the ones in the literature.

For SA-ALNS, although there are cases without a feasible solution, an optimal or

near optimal solution is also found in some cases. Moreover, SA-ALNS yield better

upper bounds compared to the solver in some cases as well. Also the run times are

usually much shorter than the other. It should be noted that SA-ALNS procedure

is still being improved, and parameter search is not performed yet. Therefore, by

incorporating better destroy and repair heuristics, and searching for better parameter

values, SA-ALNS procedure appears to be a promising method for our problem.

5.3. Objective Function Evaluation

As given in Section 5.2, we solve the instances with α = {0, 1, 2} for the proposed

objective functions. We first start by analyzing the effect of α for each of these objective

functions. Then we select an alpha value for these proposed objectives and compare

them with the objective functions in the literature. In these analyses, we only used

the instances where the optimal solution is found for all objective function types. Each
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solution of a given objective function with a given α is evaluated with nine different

metrics in the literature. These are utility, α−fairness with α = {1, 2}, range, rawlsian,

sum of pairwise absolute differences, total absolute deviation, maximum deviation, and

gini coefficient. In order to make the comparison easier, the calculated performance

metrics are scaled between 0 and 1 within each performance metric. The comparisons

are done on a radar chart, where values closer to zero are the best ones since all

objectives are of minimization type. In each axis, the alternatives can be compared

within each other, however it should be noted that comparison between axes is not

possible. Since the performance metrics range from purely utilitarian to purely equality

metrics, an objective alternative where all metrics are close to zero would be an ideal

one. However, since utility and equality are conflicting measures, we will look for the

best compromise which perform relatively well among all.

Figures 5.1 to 5.5 present the effect of different α values over the proposed objec-

tives, respectively. Note that α = 0 is not defined for Obj2.3. As mentioned before, a

tight and balanced loop indicates the given objective performs well in all performance

metrics. For Obj1, we can conclude that α = 0 performs usually well on equality

metrices, whereas the performance is worsened for the utilitarian terms. On the other

hand, with α = 1 and α = 2 the exact opposite is true. Although there is no dom-

inating α value among them, we choose α = 0 that focus more on equality. The

discussion on Obj2.1 is in parallel with Obj1, however the utilitarian metrics perform

better. Therefore we choose α = 0 for Obj2.1 as well. For Obj2.2, α = 0 performs well

in utilitarian metrics (since it is equivalent to the utilitarian objective) and performs

poorly on equality metrics, and the opposite is true for α = 2. However, we observe

that α = 1 provides a nice trade-off among utilitarian and equality metrics, therefore

we choose that. For Obj2.3, we choose α = 1 since it performs better on more metrics,

and finally we choose α = 1 for Obj3 since it provides a compromise between utilitarian

and equality metrics.

The next step in the analysis is to compare all proposed objectives with the se-

lected α values to the objective functions in the literature. Similarly, the metrics are
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calculated for the results of each objective, and scaled. Figure 5.6 provide the com-

parison among all objectives. Figure 5.6 reflects that, among the proposed objectives

Obj1 focuses more on equality, whereas Obj2 versions provide more balanced results

compared to Obj1. Obj3 performed better on equality metrics compared to others,

which can be explained by considering only the worst-off TFs at each time segments,

and one can expect this deterioration to increase as the number of TFs increases fur-

ther. An important observation is that ObjHSB and ObjP iecewisePropFair yield

very good results for utilitarian metrics, whereas they perform poorly on equality met-

rics. ObjRange performed well on equality metrics and performed poorly on others,

and the opposite is valid for ObjUtilitarian as expected. Finally, ObjRawlsian yields

a good compromise between equality and utility metrics. However, one could expect

this performance to deteriorate as the number of TFs is increased. Figure 5.7 empha-

sizes the performance of the selected best three alternatives, namely Obj2.1, Obj2.2,

and ObjRawlsian, that provide a good trade-off between utilitarian and egalitarian

metrics.

As the final step of the analysis, we calculate the “price of fairness” (POF) as

introduced in Section 2.2. The POF for each objective alternative for all considered

problems are given in Table 5.5 along with their average.

Table 5.5: Results for the objectives in the literature.
Problem Obj1 Obj2.1 Obj2.2 Obj2.3 Obj3 ObjHSB ObjPcwsPrFair ObjRange ObjRawls

P-3-4-3-16 -0,36 -0,18 -0,18 -0,18 -0,15 -0,04 -0,03 -0,33 -0,15
P-3-4-4-16 -0,20 -0,20 -0,14 -0,14 -0,07 -0,02 -0,02 -0,26 -0,11
P-3-4-3-20 -0,33 -0,31 -0,10 -0,12 -0,06 -0,06 -0,01 -0,36 -0,15
P-3-6-3-16 -0,39 -0,06 -0,01 -0,03 -0,07 0,00 0,00 -0,37 -0,17
P-2-6-2-20 -0,11 -0,02 -0,03 -0,03 -0,09 -0,03 -0,01 -0,55 -0,12
P-2-8-2-20 -0,26 -0,22 0,00 0,00 -0,11 0,00 0,00 -0,26 -0,08
P-2-8-2-23 -0,13 -0,13 -0,13 -0,03 -0,14 -0,03 -0,03 -0,14 -0,14

Average -0,25 -0,16 -0,08 -0,08 -0,10 -0,02 -0,01 -0,32 -0,13
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Figure 5.1: Comparison of Obj1 with different α values.
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Figure 5.2: Comparison of Obj2.1 with different α values.
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Figure 5.3: Comparison of Obj2.2 with different α values.
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Figure 5.4: Comparison of Obj2.3 with different α values.
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Figure 5.5: Comparison of Obj3 with different α values.
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Figure 5.6: Comparison of all objectives.
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Figure 5.7: Comparison of selected best objectives.
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6. SUMMARY AND FUTURE WORK

During the semester the base model is finalized, that is used to study alternative

objectives to provide effective and fair solutions. We analyze the performance of alter-

native objectives over a set of small instances that are generated, and we can conclude

that the proposed objectives can be used to obtain a trade-off between effectiveness

and fairness. Since the problem is hard, we propose a ALNS within SA framework.

Although parameter optimization is not performed and the heuristic is still being im-

proved, the preliminary results are promising to solve the problem in a reasonable

time.

As the future work, the following tasks will be performed in the thesis progression:

• Parameter search will be performed for SA-ALNS.

• Better and faster destroy and repair heuristics will be studied to improve solution

quality.

• Repair heuristics that can guarantee or increase the chance to obtain a feasible

solution will be studied.

• Objective function specific destroy and repair heuristics will be considered.

• Parallel computing will be implemented for SA-ALNS.

• Branch & Price method could be considered if it is suggested.

• Problem setting where the prepositioned items are insufficient to cover all demand

will be studied.

• The value of fairness consideration in the preparedness stage will be analyzed

using the routing model that will be developed.
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